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Abstract—The non-linear program which governs the provision of optimum pointwise reinforce-
ment in a plastic fracturing continuum under a predetermined stress field is formulated and solved.
Tensors which represent excess pointwise capacity are developed for the two- and three-dimensional
cascs, including skew reinforcement. and it is from these that capacity is minimized. Basic tensor
invariants are combined with the Kuhn-Tucker optimality conditions to yield the governing equa-
tions, which in some cases can be solved directly. The formulation can be employed with positive,
negative or mixcd stress fields.

1. INTRODUCTION

The problem of optimally reinforcing a material to withstand an applied stress field has
existed for some time. One of the first civil engincering studics in this category was that
carried out by Wood (1968), who sought to determine the optimum reinforcement in a slab
for a predetermined moment ficld. He examined the variation in the difference between
plastic resistance moment and applicd moments on a plane, as the plane was rotated about
the point. By requiring a safe solution, Wood mi- mzed the excess with respect to the angle
of rotation, and obtained formulac for the reguired plastic resistance moments. Armer
(1968) extended this work to include skew reinforcement.

The process involved is attractive since it yields a simple lower bound solution to the
plastic analysis of reinforced concrete slabs, which takes account both of torsion moments
(unlike strip methods) and of reinforcement economy. Unfortunately, when applied to
mixed moment fields, the procedure reduces to a trial-and-error process, which tends to
obscure the principles underlying the solution. Morley (1969) studied the saume problem,
including skew reinforcement, and produced a series of design charts and curves.

The final result is clearly the same as that derived by Wood and Armer, though the
procedure is case dependent even for orthogonal steel. Clark (1976) subsequently extended
this work to include in-plane stress as well as applicd moments,

Since then, the general field of structural optimization has advanced enormously,
particularly for framed structures, in part through the application of the Prager-Shicld
optimality criteria. Rozvany and Wang (1984), in particular, have extended Prager’s work
to the analysis of arch grids and cable networks. [t is the fact that this work concerns the
optimum member layout, and not cross-section size, which is of interest here. Strang and
Kohn (1983). for example, were concerned with shape optimization of continua with stresses
carricd by optimal Michell trusscs, rather than optimal reinforcement against failure.
Prager structures, unlike Michell frames, have member forces of the sume sign throughout,
optimizing the location of external forces, and forming globally optimal surface structures.
The two forms coincide in certain problems, if the Michell truss is optimized with respect
to the load position, though Michell frames generally consist of truss-like continua.

At this stage in their development, however, Prager structures arc not relevant to
the problem of rcinforcing a continuum, since bond renders the constant sign condition
unrealistic. Specifically. for reinforced concrete slabs, predetermined resistance moments
are employed so that the problem becomes one of shape optimization. Although belonging
to an attractive and consistent theory, the extension to complete freedom of reinforcement
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synthesis appears quite complex. The alternative offered here. which formulates the prob-
lems on strength criteria, appears promising.

The purpose of this article is to formulate and solve the non-lincar program governing
the pointwise provision of optimal reinforcement in a plastic fracturing continuum under
a predetermined stress field. It extends previous work to include general three-dimensional
problems in reinforced concrete. However, the motivation for. and much of the value in,
this work lies in the presentation of 2 more consistent and generally applicable formulation
of the optimization problem. The method of Wood and Armer. though giving the same
results for 2D problems as that used here. would become far too complicated if generalized
to three dimensions under arbitrary stress fields.

Here, some basic eigenrelations are employed in the problem formulation which.
together with the Kuhn-Tucker optimality criteria. provide a consistent approach which
embraces the Wood-Armer solution for slabs. The intention is to provide the minimum
volume of reinforcement, at a point, to resist the applied stress in excess of the concrete
vield surface, at any orientation to the reference axes. The reinforcement provides a varying
excess capacity on different planes. For safety and economy. the minimum and maximum
values of excess capacity—that is. the eigenvalues of the excess stress tensor—must be
examined. The key is quite simply to recognize that the eigenvalues of the excess stress
tensor on any plane, o,. arc the same as those of the tensor in the reference axes, g, since
the rotation matrix. R, is orthogonal.

In defining material yield andjor failure surfaces, a distinction needs to be drawn
between the different failure assumptions, particularly with fracture. Tt is assumed later, as
is sometimes the case in numerical studies of concrete, that the material is plastic fracturing,
That s, the material ts assumed to retain a constant tensile strength after cracking, effectively
thus yielding in tension. Of course, this assumption can be scen as a generalized ultimate
limit state view of a tension stiffening model, where a permanent residual stress is assumed
across a crack.

If the material iy taken to be brittle, then the excess stress will behave like a step
function throughout the minimization process, as the material cracks and “uncracks”. The
solution process is likely to be unstable. Thus, it is better to assume 4 “*no-tension”™ material
if the assumption of plastic fracture is unacceptable. From the generalized view, this requires
simply a zero residual at ultimate. For compression. the conerete will be taken as elasto-
plastic. Again, to avoid instabilitics during the solution process, the biaxial faiture surface
will be taken to be rectangular, and the multinxial surfaces as cuboid, rather than stress
dependent,

Of course, the reinforcement stiffness affects the stress field which is used for the
optimum design. [t is not the intention to solve that problem here—the extensions of the
solutions presented, coupled with the global formulation for the optimal fibre layout, form
part of a continuing study. However, the final section describes, briefly, a simplified finite
element synthesis based on the pointwise optimization techniques, but which avoids the
need for a full sensitivity analysis.

2, FORMULATION OF THE 3D PROBLEM

The general problem considered is the pointwise determination of the optimal reinforce-
ment requirements for a 3D plastic fracturing continuum under a given stress field. Let the
stress tensor of applied stress at a point x in the reference orthogonal axes x, 3. = be

S,\'x Sr‘\‘ Sr:
S(x) = Sv_r S_vv Sr: x' = e v, (h
S S S

Define the standard 3D transformation matrix R, evaluated at the principal angles of the
field S. as Q. Then the matrix of eigenvalues, g,, of S (principal stresses) becomes
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A(S) = QSQ" = diag (u,). (2)

Furthermore, since Q is orthogonal (as is R), and since expression (2) represents a similarity
transform, then the columns q,. of Q. are the eigenvectors of S (principal directions).

The characterization of the applied/predetermined stress field as positive, negative or
mixed can also be related to basic tensor/matrix properties. For a field to be positive, the
stresses on any plane must be positive or zero. Thus, in a positive field

det (8) = 0: (3a)

for positive definiteness det (S) > 0. In a negative field. where all direct stresses. and hence
principal stresses, are negative or zero, the sign of det (S) depends on the dimension of the
problem. For this 3D case

det (S) < 0. (3b)

However, in the 2D problem det (S) must be positive or zero in a negative field ; the zero
is excluded if negative definite. In a mixed ficld, the principal stress changes sign. Hence in
a 2D problem, det (S) < 0, but in this 3D case, the sign of det (S) is indeterminate a priori.

The material will be characterized as an elastic plastic fracturing material which
requires “smeared” perfectly bonded reinforcement to carry all stresses beyond the yield
surface. The failure criterion is thus a simple strength criterion along the principal vectors,
It is possible to admit a general stress ficld and yicld surface. but the formulation is greatly
simplified if positive (tensile). negative (compressive) and mixed ficlds (tension-tension-
compression and tension-compression-compression) are considered separately.

Define the stress tensor corresponding to the failure surface at a point as $(S). Here,
a simple cuboid surface is chosen so that

#(S) = ¢ = diag (4,). 4
Moreover, since the stress states are to be considered separately, the failure tensor can
be divided into its positive and negative definite components ¢, and @ ., respectively.

Finally, assuming the material to be isotropic with respect to its ultimate strength, the
failure tensors reduce to

¢, =/.1
¢ =/1 (5)

where £, (>0) and /. (<0) are the ultimate tension and compression strengths, respectively.
2.1, Positive fields

For a positive definite field, S, , the stress to be carried by the reinforcement along the
principal vectors is

A, =AS,)-¢, (6)

which can be transformed back 1o the refercnce axes through
ot =Q'A,Q=S,—f,1 N
since ¢, is hydrostatic. It is assumed that the reinforcement only carries stress along its

axis and that, initially, there are three orthogonal bands parallel with the references axes.
Thus the plastic resistance tensor provided by the steel is
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6, = diag (6,..0,,.0,.). 8)
Finally. the excess capacity of the reinforced material at ultimate is given by
g=0,—0 =0,-S_+/.1 (9)

where @ is defined by

T 0o T | (10)

For a safe design. it is clear that ¢,. g, and ¢. should be non-negative on every plane, or
thus. that ¢ must be positive semi-definite. In addition, there is the obvious practical
constraint that a,,. 7,, and a,. should also be non-negative, so that o, should also be at
least positive semi-definite. Given these constraints, the problem is to minimize the excess
strength capacity. and hence the volume of reinforcement. This is best achieved by mini-
mizing the sum of the eigenvalues, t,. of a. Thus the function to be minimized over g, is

f(y) =Tr(e) =(0,+0,+0.) (1)
where
¥ =0, 00.0,0" (12)

The non-negative constraint on e can be written more succinetly by considering the second
and third stress invariants, Baker (1989) deduced that if the second stress invariant, /,(a).
were zero, the system would be over determined in the unknowns y. Hence, at most one
cigenvalue should be zero and /1, positive. The first constraint of f(y) can thus be stated as

g (¥)=a.a0 +o0.+a0, -1, -t —1. >0, (13)
The second constraint comes from the condition that det (o) = 0 [the third invanant [, (a)]
for positive semi-definiteness, so that

>

gAy) =000, 42t 1.17,.—0 1. -0 1. —0a.1], 20 (14)
Thus the optimization problem can be written as

min f(y)

subject to

g {y) >0
g:i(y) 20 (r,)

and

g, 20, 6,20, 0,20

There are a number of ways of solving the program (P ) for the optimal solution y*,
although for such a small order problem, it is reasonable to examine the Kuhn-Tucker
conditions and solve the resulting equations directly.

First, the Lagrangian is written as
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F (3.2 = f(Y)+4,91(Y) +4292(y) (15)
with
A=y it (16)
For this problem. the first and second Kuhn-Tucker conditions [sece Walsh (1977)] yield:
ot 20, l+i(6,+0.)+4x0,0.-1.)S0
6% 20, 1+i(o.+0.)+4ix0.0.—13) 50
ox 20, l+i(0.+0,)+i0.0,—1) 50 an
and the third and fourth conditions yield :
20, 6.0,+0,6.40.0,—15,—1.—-1. 50,
it20. o0.0.+2t,1.1,.-01—0,1L—0.1, 50 (18)
It should be remembered that for reasons of determinacy. it was deduced that g, (y) > 0.

Hence, from (18),. it is clear that 4% = 0. Next, if it is assumed that A% = 0, then from (17),
the solution would be

*x __ L]
o = o

=a% =0

Howuver, if this were so, then o would be negative definite (unsafe), unless the applied stress
tensor o, , were the trivial null tensor. Hence it can be deduced that 4% > 0 so that, from
(18),, it must be that

¢:(y) = det (6) = 0. (19

Given that at most one eigenvalue can be zero, the zero determinant is a clear statement
that just one eigenvilue of @ must be zero at the optimal point, This fact is the same as that
deduced from physical considerations for the 2D slab bending problem : that the excess
capacity should be identically zero on one, and only one, principal plane.

Using the revisions to the basic K-T conditions gives a set of non-linear equations in
the unknown y and 4, (now written as 4)

I+ /‘.(O'},G'_. - IE:)

1+ ;.(0"6: - ts:)

h(z) = 1+4i(0.0,—15) =0 (20)
0.0,6.+21,1,.t.~6. 1 —0,1.—a.1,
with
w20, A=4i)>0 (21)
and
z={y" DN (22)

The solution of (20) can be obtained through Newton iteration
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240 = 2% _H ' (2%)h(z*) (23)

after some initial choice z'”. Here, the derivative of h(z). V_h(z). is the Hessian

0 ZG: ':'Ur (6| g.— r5:)
’.'U: 0 ;-Ur (0’,0’_. - fx::)
H@) = | g, ‘o 0 (0.0, —13) | (24)

(al'd:—rsf) (GTG:—YE:) (a\'al-—rsl) 0

The formation and inversion of H in each iteration is not computationally inefficient with
such small matrix orders.

Finally. it should be noted that the solution of h(z) = 0 may produce several feasible
solutions, since the K-T conditions are only necessary conditions. One more condition, the
constraint qualification (Walsh, 1977), is required to determine that the solution will be a
global minimum. It is easily shown (Baker, 1989) that the Hessian of F, is positive semi-
definite for all safe solutions so that this final condition is satisfied.

2.2. Negative fields

For a negative definite field S _, the stress to be carried by the steel along the principal
directions is
which, when transformed to the reference axes, becomes

s, =S —¢ . (26)

Reinforcement is provided in bands parallel with the reference axes, to carry this stress
beyond the material failure surface, Here, the reinforcement is to resist a compressive stress,
and so the plastic resistance tensor is written as

s, =diag(—a,., —0a,., —a,.) (27)

where a,,, 6,,., 0,,. are again non-negative.
The tensor of excess capacity is thus given by

a=6, -6, =0, -S +f L (28)

Clearly, for a safe solution, the direct stresses in o should be non-positive, with &
negative semi-definite. Thus the problem of minimizing the excess capacity can best be
achieved by maximizing Tr (a). However, to use the same program as for the positive ficlds,
the sign of & is reversed. Define the new tensor as

6" =-oc=0; +S—/_1 (29)
where the elements of ¢~ are defined in (10). Here ¢~ must be, at least, positive semi-

definite with non-negativity constraints applied to ¢, ,, 0. and g, 6,,. ,.. The maximum
has now been transformed to the minimization problem since

|[max Tr (6)} = min Tr (6 ) (30)
y y

where y = {a,,.. 0,,. 5, >" as before. Thus with the definition (29) and
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f(¥)=Tr(e"),
the program (P, ) can be solved for the solution in a negative field.

2.3. Mixed fields

When the applied stress S is indefinite, some parts of the field are positive and some
negative so that reinforcement may be required in both tension and compression. Here,
strictly speaking, the problem is to minimize the function

) = nl+(tt+]11l 31

A simpler solution can be obtained by repeating the program (P, ) for the positive and
negative stresses, thus determining the reinforcement required by the positive and negative
parts of the field.

(i) Consider first the positive part of the field. Here the applied stress to be used is
S, =8S. (32)

In solving the program (P, ) using (32). either one or two of the reinforcement stresses will
be negative. This must be, since the tensor S is indefinite. It should be noted that a negative
steel stress does not yield the required resistance to the negative ficld. It is physically absurd
since even the negative field problem was formulated with the o, non-negative. Moreover,
this represents a violation of the mathematical formulation and the appropriate action in
such cases is quite clear; no physical reasoning is required as in Wood (1968). Consider
scparately the cases where the solution to (20) yiclds one, and two, negative a,,,.

Firstly, assume for convenience that h(z) = 0 yiclds o). < 0. This is a direct violation
of the first Kuhn -Tucker condition in (17),. Hence, the only option is to adopt the second
K-~T condition, set

oF,
ay. =0 and require that 27—;— > 0. (33)
p:

Thus, there are now only three unknowns
2={0,,.0,.4)" (34)
and the set of equations h(z) becomes

] + /..(O‘_‘,G_. - r»::

hz) = | | HAlo0.— 15 =0 (35)
0.0,0; + 2t.n' Ty:Te:— 0, f_f: =0, T.tz: - a'yt.\l"r

where . = (—s5..+/,) is known. These equations can be solved algebraically to yield :

N
. 1 L,
6}" = ;L i-‘;. [T:_. .+ O’:Z‘ES". - 20': Ty Ty: t.(.‘] I

[

)
t-: b b
;L t ;’ [t elet 0’_."[3‘. - zo‘:t.(_l'rll‘:r-f:] !

"

of

(36)

Obviously the positive root must be chosen. Finally, the a,, are found from

op =0t +[o]].
Ope = 07 +[a]],

or. =0. (37
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Should either g, or g, be zero. then the other stresses can be found by rotating symbols
in (36) and (37). Finally, from either 4, or 4,,

; -1
s —— (38)

0,0.—1;.

The requirement that [ + 2*(g¥0? —t%7)] > 0 should then be checked.

For the second case assume. again for convenience, that the solution of (20) yields
65 <0 and o;. < 0. This is again a violation of the K-T conditions and the necessary
alternative option is to set

o =0 with 1+i(6.0.~17.)>0

6t =0 with l+/i(o,0,—~13)>0 (39)
so that
g, = _sv\'r +./I
g. = —9.. +/I (40)

Hence the first and last equations in (20) can be solved directly for 2* and a?, respectively,

A= e 41)
a,0.—1;
h b
at..+o.t —2r,.1,.7,,
U“=7| . 7 A\ :\I ) \.' (42)
0,6.—T;
Finally, then, the steel stresses for a minimum trace are
ay.=o0r+[af],; ar=0; ot =0 (43)

(it) Having designed the reinforcement for the tension field, attention is turned to the
negative field. The applied stress is thus

S =8 (44)

which is used to find the compression reinforcement as shown for the negative fields. The
important point to remember is that the program in a negative field is rewritten by reversing
the sign so that the problem is to find the minimum positive reinforcement in a positive
field. Hence the previous algorithm is repeated using expression (29) with (44), where o,
is now indefinite. Thus, as before, at least one o}, in the solution of (20) will be negative,
and so the formulae (36). (37) or (42). (43) should be used for the final design.

Thus part (i) using S positively reinforces the positive domain of the stress space, and
part (i) using S positively reinforces the negative domain of the stress space; illustrative
examples of the solution process are given in Baker (1989).

3. MOMENT FIELDS IN SKEW SLABS

The formulation of the two-dimensional problem follows the previous section exactly.
However, rather than repeating the stress problem, the problem of determining the optimum
plastic moment of resistance in a skew slab will be considered. That is, the two bands of
reinforcement are not orthogonal, but meet at some angle «: for convenience one band is
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x

Fig. 1. Skew reinforcement.

assumed to be parallel with the x axis (Fig. 1). It is also assumed that the concrete
carries no tension. so that the plastic resistance is provided entirely by the moments of the
reinforcement nets. Denote the plastic moments provided by the reinforcement as m,, and
my,. Since the moment vectors mi,, and m,, are not orthogonal, the moment of resistance
tensor, M, is not diagonal. Its elements can be simply evaluated by rotating a separate
tensor for the 2™ system into the reference axis system. and adding m,, :

m, 4, COsT A —pmi, Sin % COS X
px P2 icd
M, = [ ] 43)

0 . -
— M, 51N X COS X m,, sin® x
Since it is assumed that the slab has no inherent resistance moment without reinforcement,
. =¢_=0 (46)

and the applicd moment tensor is, therefore,

Nl.' - ['"J‘ ,',il(l‘] . (47)

my, o ony,

3.1, Positive fields
For a positive field

M!S =M, (48)
with det (M,) > 0; m,,, m,, > 0. The excess moment resistance tensor is thus
M=DM,-M, (49)
which will be written as
m, m,,
welre
where

.

m, = m, +my, COS* x—m,,
> hd

= M, sinT ae-nny,

M, = —mg, SiN % COS U — M. (51)

Following the same reasoning as before, the optimization problem, which seeks a solution
for the unknowns

y = (mg o omg, >t (52)

becomes
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mvin [F(3)=Tr (M)
subject to

g(y) =det (M) =0 (P..)
and

my. =0, my, 20
After writing the Lagrangian

Fy.2) = f(y) +4g(y) (53)

the Kuhn-Tucker conditions yield the equations

L+ Am,
h(z) = | [+40m, cos® a+m, sin® a+2m, cosasina) | — g (54)

mom, —m:,
Here, the system can be solved algebraically. Clearly, from the first two equations in (54),
m,=m +2m, cota (55)

which when substituted in (54), yields the solution (Baker, 1989),
n,,
m, = (cosa+sgn(m,)) (56)
sin a

in the range of skew 0 < 2 < 7 physically the second half plane 7 < a < 2r is the same.
Using (56) in (51),, gives the plastic moment

n,, m,..+m, . cota
My, = ==+ ] o e ] (57
sin- sin x

Next, substituting (57) in (55) yiclds
= T g ) (58)
m, = sinx (sgn (m,,) —cos «

which must be non-negative. Finally from (51), (57) and (58), we find

R m,..+n, cotx
my, = m, +2m,, cot x+m, col” 2+ |:——~~»5-— —_—~--~--«—»] 5%
sin
which can also be guaranteed non-negative (Baker, 1989).
3.2. Negative fields
Here
M, =M, (60)

with m, 1, —m?, > 0:m,,, m, < 0. The excess moment tensor. is given by
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M =M; —M; (61)

where the plastic resistance tension M is exactly like (45) except that the moments are
written with a superscript and m,. m,, must be non-positive. It should be noted that the
sign of the plastic moments is dictated by the position of the net (top or bottom of the
slab). but that the stress in the steel is always positive; in the stress problem, a negative g,
implied a compressive stress. Hence. the problem could be rewritten as a minimization
problem with non-negative m, values. Alternatively. the non-positive M, can be retained.
and a maximum of Tr (M) be found.

Either approach leads to a set (54). Here the solution which guarantees a non-positive
m,. and m, is taken. The result is

. n, . +n, cotx
mg, = m +2m,, cot x+ni,, cot” x— [—L«“—] (62)
sin x
n,, m,..+m, cotx
My, = - — |: ! —~—.—“—'—~—j| (63)
sin- x sin %
which are always non-positive.
3.3, Mixed fields
In a mixed ficld, M, is indefinite with det (M) < 0
m, o, —m’, <0, (64)

Thus the reinforcement will be required in one, or probably two, dircctions (x, «) in both
the top and bottom of the slab. Here, the minimum and maximum trace conditions should
be replaced by a minimization of the sum of the absolute values of the principal excess
moments, tor both top and bottom of the slab, M* and M . However, it is preferable to
repeat the minimization process for both top and bottom reinforcement, from the previous
sections, since a minimization in the form of expression (31) can only require a greater
reinforcement volume. Now, of course, the non-negativity of (57) and (59), or the non-
positivity of (62) and (63) cannot be guaranteed « priori, though these expressions can be
rewritten as bounds to m,, and m,,, and are in fact the boundarics to Morley’s domains.
Should any element of the solution contravene the conditions

My, >0 my,my, <0 (65)

then it is a requirement of the Kuhn-Tucker conditions that the offending element be set
to zero, and the corresponding equation in h(z) becomes an inequality. Physically, this is
the same as saying that it is nonscnsical to provide top reinforcement to resist a positive
moment ; the fact that m,, and m,, say, may be of opposite sign is just a result of the
mathematical minimization,

Once one unknown is zero, the second can be obtained directly from the g(y) =0
condition. Thus, if m,, <0 from (57), then my, is set to zero and m,, is found from
det (M) = 0, giving

pze

h
"
nLo=m, —
P‘ e I""-I"l

n

=0. (66)

pr

Similarly. if sy, > 0, m;, can be recalculated
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N

LLOTS
=My T (6?)

b,

my,

From (64) it cun be shown that m, will always be positive. and m;, negative, as required.
Expressions (66) and (67) agree with those for an orthogonal set. but differ from those in
Armer (1968) which contain functions of x. However, if either my, or m;. does not exist,
then an angle x for the corresponding m,, or m_, has no meaning. It is clear that the
constraints on m,, and m;, cannot both be contravened for a given M, so that two bands
of reinforcement will be needed at one surface. and one at the other.

If either m, or my, contravened the non-negative or non-positive conditions respec-
tively, the recalculated plastic moments are

My mg, =0
I P — B
)npz‘;;g{“: = e b 5 AR A T {68}
s, o colx+my, Cot x
Again it cun be shown that both constraints cannot be contravened for a given M,

4 FAILURE SURFACES -~ YIELD LINES

The condition g(y) = 0 which was deduced through the K-T condition in Section
2.1 could be reasoned on physical grounds since it corresponds to one principal excess
stress/moment being vero. That s, the minimum is found when the exeess capagity is zero
on some planc. This condition is thus a yicld condition and the statementy

det (o) =0
det (M) =0 {69)

are just yield eriteria for any of the formulations considered.

Moreover, it is clear from the similarity transform (2}, and the vield conditions (693,
that the eigenvectors of the excess capacity tensor, either o for stress problems or M for
bending in slabs, are the direction cosine vectors of the failure surface. Thus, one eigenvector
q. corresponding to the yield condition (zero eigenvalue) is the normal to the yield surface
and, by the normality rule, it is tangential to the yield line at that point. From the orthog-
onality of eigenvectors, the second ¢igenvector, ¢, must be tangential o the yield surface
and orthogonal with the yiekd line.

To obtain an expression for the failure angles, ), and ¢4, itis only necessary to expand,
say, M*q = 0. After eliminating the moments using (56) and (51) for a positive ficld, we
obtain:

(1 +cos 2) % o
tan ), = - iny = —~cot ) or ~—lan . (70)
s 2 2

Thus, the failurc angle is

b= or (1)

*

[
(¥ I |

In other words, when the optimum reinforcement is used. the viceld line bisects the angle
between the reinforcement bands, The value to be used from (71) depends on the relative
magnitude of m, and m,
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9 a =n
m.>m, P = iii
m.<m, b= : (72)

-

Note that (72) applies whether or not 71, and m,, are equal.

The same result can be shown to apply in the case of negative fields. as would be
expected. For a mixed field, where either m,,, or m,, is zero, the eigenproblem can be solved,
but no important result like (72) is generally applicable.

5. OPTIMUM SKEW

In practice. orthogonal nets are most common, and if a skew is adopted. it is usually
to suit some geometric constraint, such as bridge skew. If, however, skew can be chosen,
then the design can be made even more economical.

5.1. Moments in slubs

Using condition (71), Morley (1969) reasoned that the optimum design occurred when
the skew, x, was twice the principal angle of the applied moment triad so that failure would
oceur along the principal plane. That is,

—-2em, .
tan ¢ = —~——2%, (73)
"y —m,,

It is true that this condition yiclds m,, = m,,, but it does not yield the absolute minimum
moment volume, F,. For a positive ficld, it is a requirement that m,, m, be non-negative,
and thus the absolute allowable minimum is given by

Tr(M) =0 (74)
corresponding (o

l/m = (”,p\ +!’xp1) = (n’i«l\' +"!&“‘) (75)

which follows when the absolute term in (57) and (59) is zero. That is, the optimum skew
corresponds to

an o = - -, (76)

Moreover, the skew {76) when substituted into (57) and (59) gives

hd
m;.,
My, = M — -
my,
m}
ER2
R I )
my,

which are guaranteed positive definite by the definition of a positive field. 1t is interesting
to note that the optimum resistance moments, given the optimum skew. are actually
independent of that skew.

For a negative ficld, the same condition (75) can be applied. and this gives rise to
identical expressions to (77) ; here m;, and my, arc negative definite by the definition of a
negative field.
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In a mixed field, the optimum skew depends on whether one or two bands of reinforce-
ment are required. For the bottom steel. if the skew is optimized. the reinforcement
requirements are given by (77) with skew (76). However, either m,, or m,, in (77) must be
negative. If m1,, < 0, then m,, would be negative so that expressions (66) should be used
and skew is irrelevant.

If m,, > 0, then m, would be negative. However, expressions (68) with skew (76) will
not yield the minimum volume since (76) assumes both moments positive {Baker, 1989).
Nonetheless, it is intuitively obvious that with one negative principal moment, the optimum
skew would correspond to the principal angle with 1, equal to the first principal moment
of M,.

5.2. Stress problem

For the general 3D stress problem. no effort is made to study the mechanics of
behaviour through an algebraic solution. Here, the non-linear program will be reformulated
for non-orthogonal reinforcement bands, leaving the numerical solution to given cases.

To find the resistance tensor, o, plastic stress o, are considered for each band defined
by the non-orthogonal axes «,, 2; and x,. Following the approach in Section 3, the
individual resistance tensors are null except that (6,,),, = a,. The tensor ¢, is thus found
by rotating the three @, into the reference set (x. ¥, x) using the 3D rotation matrices of
direction cosines. For convenience, axis x will be defined as parallel with x,. Thus, the
resistance tensor can be written as

ﬂpu = ﬂ;»l((irl‘sl/)+d;\2([|:ll;)+a;v3(”l|nl;) (78)

where i, j (=1, 2, 3) refer to the orthogonal axes. We note that the x, and 2, axes themselves
belong to orthogonal sets but that the direction of the second two axes, and also the cosines
{, and n,,, i > 1, do not enter the formulation.

In this section, only the formulation for positive and mixed fields will be given since
the extension follows as before. Thus, writing the components of ¢, as g, the clements of
the excess tensor are now

(Tu‘ = 6;\]((5:1*(5{;) +(Gp.‘.(1h{l;) +gp\(n|n””) “G.xu' (7())
Here, the direction cosines are unknowns, so that
Y =001 Opra O i Ll ) (80)

The conclusions made regarding the second and third invariants of o still apply, and this
the optimization problem becomes

min f(y)
¥

subject to

gi(y) >0

g:{y) =0

gLy =0 (P.)

gi{N) =0 (81
with
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fW=Tr(@) =Y (6,—0u) (82)
i=|
(where no summation is implied by ii), and
g:(y) = det ()
g;(L) =15, + 17+, -1

9:(N) = ni+niy+ni;—1. (83)
The Lagrangian is thus
Fo(y.4) = f(y)+4:9:(y) + £:9:(L) + 2A494(N) (84)
where A = (4, 4. 4,)7 and 4, = 0. After differentiating F, (y, 4), the K-T conditions yield
a set of non-linear equations in the unknowns z = (y", 277,
h(z) = 0. (85)

The explicit form of h(z) is given in Baker (1989). These equations can be solved in a
number of ways. If a Newton solution were adopted, the Hessian H(z) would be symmetric
though not all diagonals would be zero here. It should also be noted that the cost of a
Newton solution of this 12 x 12 system could be significant.

As before, should any of the non-negativity conditions be violated in a mixed field, the
offending a,, is sct to zero, removed from y (and z) and the relevant equations in h(z)
removed. For the plane stress problem, the program can be reduced to just four equations,
with the unknown skew represented by x:

= <0,.0,.20.4)" (86)
l + ;.ﬂ::
14+ i(d.,cos’ 2+0a,, sin’ x~0,, cos a sin a)
h(z) = 2/0,,(a,; cos 2 —a,, sin %) (87)
0,10, —0};
There is no need to solve the program since the deductions made for the moment field
problem apply here to the two dimensional stress problem.

6. NUMERICAL EXAMPLES

6.1. Compressed pancel

The programs for the two-dimensional stress problem will now be used to demonstrate
certain features of optimum reinforcement requirements in the end block of a compressed
pancl. Figure 2 shows the finite element mesh used to obtain the stress levels. Failure

Fig. 2. Mesh layout for compressed panel.
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Table l. Optimum reinforcement for compressed panel. Stresses were evaluated
for a load of 200 kN. Material constants /, =0Nm™°, f = —20Nmm ~

Element [ 2 3
o, 2472 1.5 —13.348
3 a, —21.774 22088 —(7.627
5 T, -0.656 —2362 - 13608
7 v 2.492 173  —1.71S
@ o 21806 22341 -29.326
- 0, -5 -5 —40.5
ap. 2.492 1.752 0
= Orthogonal (x,y) g, 1.794 2.348 11.236
2 v 4.286 4.100 11.236
3 . 2.492 1.736 0
3 Orthogonal 4, o, 1.806 2348 9.326
£ vV 4.298 4078 9.326
Z Ton 2.492 1.752 0
E x = 45 T 4.526 12.024 144
£ v 7018 13776 134
2 a, 2.492 1.752 0
© x =135 O 3.946 4182 9.348
v 6.438 5.934 9.348

occurred [see Baker (1989)] at 200 kN, hence elastic stresses at 100 kN were doubled to
give design ultimate values. The tensile strength was again set to zero and /. = =20 N
mm °. Results are detailed for just three elements lying along the line of the “wedge face™
(sce Fig. 2); the stresses along this line are of the course the most interesting.

Table 1 lists firstly the stresses and principal stresses followed by the caleutated point-
wise reinforcement for four reinforcement patterns : an orthogonal net aligned in the (v, »)
system, an orthogonal net aligned to the principal stress axes and two skew nets with one
band parallel to x and the other angles of 45 and 135, respectively. The stress ficlds for
clements | and 2 were mixed, but for element 3, it was negative definite.

Mathematically, of course, many of the steel stress values would be negative to cope
with the negative arcas of the fields. The stresses given represent the required arcas. Written
as resistance stress, the tabulated values provide resistance to the applied stress in excess of
the yield surface at any orientation.

It is of course impractical to align reinforcement along principal planes, though it is
clear from element 3 that considerable savings would be made were it possible. In fact, it a
field is positive or negative, and in many mixed fields, then such an alignment will yield the
absolute minimum reinforcement volume ; this can be scen by reference to Mohr's circle
noting that the reinforcement stresses required are the principal stress of applied stress. In
some mixed fields, however, an orthogonal net in the reference axes —or some other—may
yield a smaller volume as was the case for element 1. It should be remembered that, being
a mixed field, the reinforcement areas o, and o, were determined from the positive and
negative strategics; for this 2D case, equivalent formulae like (66) and (68) are directly
applicable. Comparison of these formulae with Mohr's circle confirms that the observed
relationship was quite reasonable.

Although the applied stress tensor in element 3 was negative definite, the tensor in
excess of the compression failure surface was mixed. That is,

[ 6652 —13.608
% =1 _13.608 2373

with cigenvalues 9.26 and — 18.29. Since the stress of 6.652 lics within the surface, and is
not actually an applied stress, there is no need to reinforce in both directions, unlike elements
1 and 2 which require steel to resist positive and negative stress.

As regards the choice of skew, the two valucs, along and orthogonal to the 45 plane.
were adopted because cracks form along the shear plane/wedge face. In every case the skew
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Table 2. Optimum reinforcement for a compressed

cube. Stresses were evaluated for a uniform pres-

sure of 20Nmm~3 Material constants
f,=0Nmm™ f =-20Nmm"*

Position Node | Node 2
FE stresses
Gy 0.159 —3.306
. 0.159  —5.440
O —22.384 ~26.876
Tew —0.035 0.242
T, —0.305 1.235
T —0.305 ~2.424

154

Optimum reinforcing

Oy 0.199 0

- 0.199 0

(= 2.393 7.032
Volume 2782 7.032

a = 135" gave a smaller volume than x = 45°. This is because the shear crack actually forms
by rupture of many small struts formed by cracks across the wedge face. These minimum
volumes, which represent an efficient choice of skew, reflect this fact. Since a,, = 0 for all
nets in element 3, it is clear that the optimum skew would correspond to the principal angle.

6.2. Compressed cube

For a sccond example, the programs for the three-dimensional stress problem will be
used to determine reinforcement requirements at selected points in a cubic concerete footing
(1500 x 1500 x 1500 mm). The cube was loaded through a 750 mm square bearing plate
carrying a uniform pressure of 20 N mm “*. The clastic stresses were found using a finite
clement mesh of 32 20-node isoparametric bricks, using reduced integration. Nodal stresses
were obtained by lincarly interpolating from the cight Gauss points to the clement faces,
and then lincarly to the nodes. Only two nodal positions will be examined, for brevity.
Considering a 3D representation of Fig. 2, the four 457 wedge faces meet at a single point
on the centreline of the cube, denoted node 1. Node 2 lies midway along the edge of the
bearing plate.

Table 2 shows the FE stresses at nodes 1 and 2, together with the reinforcement
requirements for an orthogonal net at each site; the requirements for the positive and
negative stresses have been combined. The same material strengths as in the last example
were used. At both positions, some sensitivity was noted with regard to the choice of starting
vector for Newton iteration, but there was no difficulty in achieving the results.

The applied stress tensor at node 2 was negative definite, thus requiring no positive
reinforcement, whereas the tensor in excess of the compression failure surface was mixed.
In fact, the optimum gave both o, and g, as negative so that (42) and (43) were used to
find the steel requirements in the = direction. At node 1, the stress tensor in excess of both
the tensile and compressive failure surfaces was mixed. Reinforcing for positive stress gave
a negative g,., so that expressions (36) and (37) were used to find the x and y requirements,
whereas reinforcing for negative stress again yiclded two negative values so that (42) and
(43) were used for stress in the - direction.

7. FE SYNTHESIS AND GLOBAL OPTIMALITY

A simplified finite element synthesis might be proposed, whereby the structure was
discretized and analyzed under design ultimate loads. Thus the pointwise optimization
would be carried out over the structure, which would be reanalyzed, including the new steel
stiffness, and the process iterated until some tolerance on reinforcement densities was met.

The main objection to this process is that it may not yield the globally optimal solution
since it is comprised of the sum of minima. not the minimum of a sum. That is, the globally
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optimal solution would require the minimum total reinforcement volume. In the case of a
three-dimensional stress problem, the objective function would thus be

®(o) = L (14:(0) +14:(0)| +4:(a)]) Q (88)

where the 4, are the eigenvalues of the pointwise excess stress tensor @ ; note that (88) is
very like Strang and Kohn's (1983) Michell problem. The volume integrated in (88) would
be carried out over discrete points (Gauss stations) in a finite element formulation. However,
given a strength criterion, in a sense, it does not matter whether pointwise or global
statements are used, since local failures are not permitted and the approach reinforces
everywhere. This is. of course, unnecessary in reinforced concrete since unreinforced cracked
zones at ultimate are quite acceptable. Impractical reinforcement patterns might be ration-
alized. or simply chosen by practical choice or constraint, though perhaps at the expense
of optimality, which expects failure at all points at the same load.

The true optimum will be found from a solution which fuses the optimum layout
problem with the continuum stress problem, and which embodies sensitivity analysis,
because of the effect of stress flow on optimum reinforcement. For practical purposes. the
simple algorithm outlined above should suffice.

8. CONCLUSIONS

A consistent approach to the provision of optimum pointwise reinforcement to resist
fracture has been presented. The method was to define an excess plastic capacity tensor and
to write the governing non-lincar program in terms of the invariants of the tensor. The
Kuhn-Tucker optimality conditions were explicitly determined for the two- and three-
dimensional cases, including non-orthogonal ncts and optimum skew. The resulting equa-
tions could be solved numerically using a varicty of technigues, since the order is small,
and in certain cases they were solved algebraically. The latter gave specilic physical insight
to the meaning of the resulting formulace in the two-dimensional and plate bending cases :
(i) when the skew angle is twice the principal angle of the applied moment triad, the required
moments of resistance are equal, (if) optimum skew can be found from tanx = —m, /m,,,
if two bands of reinforcement are needed, (i) in a mixed field, where just one band is
required, this should be oriented to the principal angle of the moment trad.

The technique presented provides understanding of the mechanics of the problem,
both through the solutions obtained and, where solutions were known, through a study of
the optimization process. The appeal of the approach lies in being able to deduce directly
from the Kuhn-Tucker conditions so muny of the physical properties of the problem.
Notwithstanding, the technique represents a powerful lower bound approach to the design
of fracturing materials such as reinforced concrete. '
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